Degeneracy: Consider the following linear program
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Add slack variables and use these slacks as the initial basis:
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If x5 enters, then x3 and x5 are both candidates to leave. Choosing

X5 to leave gives
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We have a degenerate basis {a3, a4, as}.

Now x4 enters, and x5 will leave:
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We still stay at the same point x = (0, 10, 0, 14, 0) even though the
basis changes. At the next Simplex pivot, x5 will enter and x; will
leave, giving x = (6, 6, 0, 0, 4), which turns out to be optimal.



Geometric Interpretation

x = (0, 0, 30, 24, 10)
x = (0, 10, 0, 14, 0)
x = (0, 10, 0, 14, 0)
x=(6,6,0,0,4)



Geometric Interpretation

Suppose we have a problem in inequality form with n
variables and m constraints. Degeneracy means accidental
intersection of more than n hyperplanes. Thus there will be
zero-valued variables in the basis. Several choices of
nonbasic variables then define the same exact point.



