Degeneracy: Consider the following linear program

min
$$-3x_1 - 4x_2$$

s.t. $2x_1 + 3x_2 \le 30$
 $3x_1 + x_2 \le 24$
 $x_2 \le 10$
 $x_1, x_2 \ge 0$

Add slack variables and use these slacks as the initial basis:

$$z = 0 - 3x_1 - 4x_2$$

 $x_3 = 30 - 2x_1 - 3x_2$
 $x_4 = 24 - 3x_1 - x_2$
 $x_5 = 10 - x_2$

If x_2 enters, then x_3 and x_5 are both candidates to leave. Choosing x_5 to leave gives

$$z = -40 - 3x_1 + 4x_5$$

 $x_3 = 0 - 2x_1 + 3x_5$
 $x_4 = 14 - 3x_1 + x_5$
 $x_2 = 10 - x_5$

We have a degenerate basis $\{a_3, a_4, a_2\}$.

Now x_1 enters, and x_3 will leave:

$$z = -40 + 3/2 x_3 - 1/2 x_5$$

 $x_1 = 0 - 1/2 x_3 + 3/2 x_5$
 $x_4 = 14 + 3/2 x_3 - 7/2 x_5$
 $x_2 = 10 - x_5$

We still stay at the same point x = (0, 10, 0, 14, 0) even though the basis changes. At the next Simplex pivot, x_5 will enter and x_4 will leave, giving x = (6, 6, 0, 0, 4), which turns out to be optimal.

Geometric Interpretation

$$x = (0, 0, 30, 24, 10)$$

$$x = (0, 10, 0, 14, 0)$$

$$x = (0, 10, 0, 14, 0)$$

$$x = (6, 6, 0, 0, 4)$$

Geometric Interpretation

Suppose we have a problem in inequality form with n variables and m constraints. Degeneracy means accidental intersection of more than n hyperplanes. Thus there will be zero-valued variables in the basis. Several choices of nonbasic variables then define the same exact point.